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Abstract— Ethereum smart contracts underpin critical DeFi and enterprise workflows, but their immutability and financial exposure 

make them prime targets for exploitation. Vulnerabili- ties such as unchecked delegatecall usage, arithmetic overflows, reentrancy flaws, 

and timestamp dependence can lead to serious breaches if undetected before deployment. This research proposes a lightweight, real-time 

multi-class vulnerability detector that combines a CNN-BiLSTM network for semantic pattern learning with a Solidity-specific rule-

based verification layer. The model is trained using custom tokenized Solidity code and leverages focal loss and oversampling techniques 

to handle class imbalance across four major vulnerability types. Unlike static analysis or binary classifiers, this hybrid system offers 

nuanced catego- rization and semantic validation using rules drawn from the Solidity Vulnerability Catalog (SWC). It outputs 

interpretable, class-specific justifications that aid developers during code audits. Evaluation on a dataset of ethereum smart contracts 

showed reducuction in false positives, particularly in lower-frequency classes like Dangerous Delegatecall and Timestamp Dependency. 

Thus, this solution advances the precision, interpretability, and usability of smart contract vulnerability detection tools, making it 

deployable for real-world blockchain development environments. 

Index Terms— Hybrid Deep Learning, Rule-based Approach, Vulnerability Detection, Ethereum Smart Contracts 

 

I. INTRODUCTION 

Ethereum smart contracts serve as the backbone of de- 

centralized applications, executing logic autonomously on 

the blockchain. However, their immutable nature and 

financial significance make them attractive targets for 

malicious actors. Detecting vulnerabilities in these contracts 

is challenging due to the diversity of coding styles, logic 

flows, and evolving exploit strategies. 

Conventional tools such as static analysis and symbolic 

execution offer rule-based precision but suffer from high 

false positives and limited adaptability. On the other hand, 

deep learning approaches provide scalability and 

generalization but often act as black boxes and are biased 

toward majority classes, especially in imbalanced datasets 

common to smart contract security. 

To overcome these limitations, this research proposes a 

hybrid approach that combines a CNN-BiLSTM deep 

learning model with a Solidity rule-based validation layer. 

The neural network learns structural and sequential patterns 

from Solidity contracts, while post-prediction rule filters 

validate or suppress outputs using domain-specific heuristics 

from the Solidity Vulnerability Catalog. The dataset is 

augmented using synthetic bug injection to improve the 

model’s ability to recognize low- frequency vulnerabilities. 

The goal of this study is to build a real-time, multi-class 

vulnerability detection system that balances precision, speed, 

and interpretability. By combining deep learning and rule-

based logic, the system aims to improve detection accuracy 

across multiple vulnerability types while maintaining 

computational efficiency suitable for integration into 

development pipelines. In summary, this work makes three 

core contributions: (i) a light-weight CNN-BiLSTM 

architecture trained with focal loss and oversampling to 

tackle severe class imbalance; (ii) a Solidity-aware rule layer 

that converts raw predictions into human-readable, SWC-

mapped alerts; and (iii) an IDE-ready API that streams live 

confusion matrices, precision–recall dashboards, and JSON 

reports to support continuous smart- contract auditing. 

II. PROBLEM STATEMENT 

Ethereum smart contracts are widely deployed in 

decentralized financial systems, digital assets, and enterprise 

ap- plications, yet their inherent immutability and public 

visibility make them highly susceptible to logic and runtime 

vulnerabilities. Existing vulnerability detection tools either 

employ static rule-based logic or deep learning methods, each 

with key limitations. Static analyzers often miss novel exploit 

patterns and suffer from high false positive rates, while pure 

machine learning approaches, especially binary classifiers, 

fail to distinguish between different types of vulnerabilities 

or explain the cause of their predictions. 

Moreover, real-world contract datasets are highly 

imbalanced, with some vulnerabilities like Reentrancy and 

Integer Overflow dominating, while others like Dangerous 

Delegate- call and Timestamp Dependency appear 

infrequently. Most existing models do not handle this 

imbalance effectively, leading to biased or incomplete 
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detection. In addition, the lack of interpretability in neural 

models poses a barrier to adoption by developers who need 

explainable output during audits. 

To address these gaps, this work proposes a multi-class 

hybrid vulnerability detection system that combines a CNN- 

BiLSTM deep learning architecture with a Solidity rule-based 

verification layer. The deep model captures contextual code 

patterns, while the rule-based system enforces semantic vali- 

dation using known heuristics (e.g., checking for delegatecall 

or block.timestamp). Unlike binary classifiers, our model 

pro- vides class-specific predictions, improving detection 

granularity and reducing false positives. Class imbalance is 

addressed through focal loss and oversampling, eliminating 

the need for synthetic augmentation. This approach enables 

interpretable, real-time detection across four vulnerability 

types with high reliability and low inference latency. 

III. OBJECTIVE 

The primary objective of this research is to develop a real- 

time, hybrid deep learning and rule-based system capable of 

detecting and classifying multiple vulnerability types in 

Ethereum smart contracts. Unlike traditional binary 

classifiers or static analyzers, the proposed system aims to: 

• Perform fine-grained, multi-class classification of smart 

contract vulnerabilities, specifically targeting Dangerous 

Delegatecall (DE), Integer Overflow (OF), Reentrancy 

(RE) and Timestamp Dependency (TP). 

• Leverage CNN-BiLSTM architecture to extract both 

spatial (syntactic) and sequential (semantic) features from 

tokenized Solidity code, enabling the model to capture 

complex vulnerability signatures. 

• Reduce false positives through a post-classification rule- 

based validation layer, which uses Solidity-specific 

heuristics aligned with the SWC (Smart Contract 

Weakness Classification) registry to cross-verify 

predictions. 

• Address data imbalance using focal loss and 

oversampling, thus eliminating the need for synthetic data 

augmentation while ensuring accurate detection of 

underrepresented vulnerability types. 

• Provide interpretable results that support developers in 

understanding the root cause of detected vulnerabilities 

with class-specific insights. 

IV. RELATED WORK 

Vulnerability detection in Ethereum smart contracts has 

been extensively researched, with existing solutions 

employing static analysis, symbolic execution, deep learning, 

or hybrid frameworks. While rule-based systems offer 

interpretability, they are limited to predefined patterns. Deep 

learning models 

enhance generalization but struggle with explainability and 

handling class imbalance. Hybrid models have emerged to 

combine these strengths and address their individual 

limitations. 

Graph-based models like GNNs and transformer-based 

systems such as CodeBERT and GRATDet achieve high 

precision by learning contextual and semantic relationships in 

contract code. However, their complexity and compute 

requirements hinder deployment in real-time settings. These 

models are often not optimized for rapid inference or 

integration within live development workflows, and their 

decision-making processes are generally opaque. 

Hybrid models that combine deep learning with symbolic 

rules have shown improved real-time viability. Multi-modal 

approaches integrating opcode, source code, and graph 

structures provide richer context but introduce significant 

complexity and overhead. These approaches often fail to 

strike the necessary balance between interpretability, 

efficiency, and flexibility required for real-world auditing. 

This research proposes a practical and scalable hybrid 

approach combining a CNN-BiLSTM model with a rule-

based validation layer. Unlike GNNs, the model leverages 

Solidity- specific tokenization and sequential modeling to 

enhance both speed and interpretability. Compared to 

transformer models, it is computationally lightweight and 

designed for real-time classification of multiple vulnerability 

types. Rule-based cross- verification further improves 

precision and trustworthiness, addressing key challenges in 

existing approaches. 

By consolidating these insights, this work bridges the gap 

between accuracy, efficiency, and explainability, providing a 

practical solution for real-time smart contract vulnerability 

detection. 

V. PROPOSED SOLUTION 

Due to the immutable nature and financial exposure of 

Ethereum smart contracts, robust and real-time vulnerability 

detection is essential. Existing tools often fall short in 

handling rare vulnerabilities, reducing false positives, or 

operating under real-time constraints. This research proposes 

a hybrid model that combines deep learning with rule-based 

post-processing to classify contracts into multiple 

vulnerability categories effectively. 

• Hybrid Model Architecture: A CNN-BiLSTM model is 

used to detect vulnerability patterns in smart contract 

code—CNN captures syntax patterns, and BiLSTM 

captures sequential dependencies. This is followed by a 

rule- based validation layer that verifies predictions 

against SWC-guided heuristics. The hybrid structure 

enhances detection accuracy and reduces false positives, 

especially for minority-class vulnerabilities like 

dangerous delegate- call. To fine-tune the architecture for 

smart contract data, the CNN-BiLSTM model 

incorporates two convolutional layers with filter size 128 

and kernel size 5, followed by a max-pooling layer and a 

128-unit BiLSTM block. This arrangement ensures that 

both local patterns and long- range control flows in the 
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code are captured effectively. A fully connected layer 

with ReLU activation precedes the softmax output layer 

for four-class classification. Dropout regularization and 

early stopping are used to enhance generalization. The 

model is trained using focal loss to mitigate class 

imbalance and ensure robust classification of rare 

vulnerabilities. 

 
Fig. 1: Data Processing Workflow 

• System Workflow: Smart contracts undergo Solidity- 

specific tokenization to preserve meaningful syntax and 

structure. Instead of CFGs and ASTs, direct sequence 

modeling is applied using token vectors. The CNN-

BiLSTM model outputs class probabilities, which are 

then filtered through the rule-based validator to suppress 

false alarms and enforce alignment with known 

vulnerability indicators (e.g., use of delegate- call, 

block.timestamp, etc.). This workflow enables faster 

inference by avoiding computationally expensive graph 

constructions like CFGs. Tokenization is done through a 

custom parser that segments contract code into mean- 

ingful tokens such as control keywords, variables, and 

function calls. The model uses fixed-length token vectors 

padded or truncated to a length of 1,000. Each token is 

embedded into a vector space where semantic similarities 

are preserved, allowing the neural model to generalize 

across diverse coding styles. This streamlined pipeline 

supports integration with IDEs and security audit tools, 

making it a practical real-time solution. 

• Tokenization for Model Training: Code mutations 

and token reordering help simulate diverse coding 

styles and logic structures, improving model 

generalization across various contract types. 

• Advantages Over Existing Methods: Compared to 

transformer or GNN-based systems, this architecture 

offers a lighter footprint, faster inference, and better 

interpretability. The rule-based verification boosts 

trust in predictions, while multi-class output provides 

finer- grained insights than traditional binary 

classifiers. This makes it ideal for plug-in deployment 

in development environments. 

In summary, the proposed approach leverages deep 

learning, rule-based validation, and synthetic data 

augmentation to enhance the accuracy and efficiency of smart 

contract vulnerability detection. The system is designed for 

real- time performance, making it a practical solution for 

securing Ethereum smart contracts. 

VI. METHODOLOGY 

The methodology involves constructing a hybrid multi-

class classification pipeline using CNN-BiLSTM for 

vulnerability pattern learning and a Solidity-specific rule-

based system for post-classification verification. The process 

includes data pre- processing, tokenization, model training, 

rule-layer integration, and performance evaluation under real-

time constraints. 

A. Data Preparation and Preprocessing 

Solidity contracts were collected from verified open-

source datasets and GitHub repositories associated with 

known vulnerabilities. Each sample was labeled based on 

four categories: Dangerous Delegatecall (DE), Integer 

Overflow (OF), Reentrancy (RE), and Timestamp 

Dependency (TP). The contracts underwent preprocessing to 

eliminate comments, normalize spacing, and standardize 

brackets and function indentation. This ensured that only 

functional code contributed to token sequences, enhancing 

pattern consistency across classes. 

To ensure label quality, samples were cross-referenced 

with curated entries in the SWC Registry. Samples with 

ambiguous patterns or unclear exploits were discarded to 

maintain high annotation precision. The final dataset 

comprised 2,217 con- tracts, with class imbalance handled 

downstream during model training. 

B. Tokenization and Feature Engineering 

A Solidity-specific tokenizer was developed to preserve 

semantically significant tokens such as delegatecall, 

call.value, and block.timestamp. The tokenizer converts code 

into a sequence of tokens, filters out comments and 

uninformative literals, and aligns similar constructs to shared 

token IDs (e.g., mapping both require and assert to COND). 

Each token sequence was then padded or truncated to a 

fixed length of 1,000 tokens and embedded using a trainable 

embedding layer. This embedding captures contextual 

similarity between different code constructs. Additionally, 

simple heuristics (like detecting modifiers or low-level calls) 

were encoded as auxiliary binary features to supplement the 

sequence input. 

C. Deep Learning Model: CNN-BiLSTM Hybrid 

The classification backbone is a CNN-BiLSTM model tai- 

lored to learn vulnerability signatures across sequences of 

Solidity tokens. 

• CNN layers extract shallow code features, such as unsafe 

call sequences or misuse of modifiers 

• BiLSTM layers capture bidirectional control flow and 

dependency relationships in code logic. 

• The model is optimized using focal loss to address class 

imbalance, and trained with dropout regularization and 
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early stopping to improve generalization. 

 
Fig. 2: Hybrid Model Working 

D. Rule-Based Validation System 

After classification, each contract prediction is passed 

through a rule-checking layer that cross-validates the result 

with known vulnerability indicators. For example, if a 

contract is predicted as containing a timestamp dependency, 

the rule checker verifies the presence of block.timestamp or 

similar constructs in a relevant logic block. 

These rules are derived from the Solidity Weakness 

Classification (SWC) and implemented using static pattern 

matchers. The rule engine helps suppress spurious 

predictions, especially in the case of over-predicted majority 

classes like RE. Combined with the classifier output, this step 

contributes to a reduction of false positives by approximately 

19%, making the hybrid output more trustworthy for 

developer review. 

E. Evaluation Metrics and Performance Testing 

The model’s performance is evaluated using accuracy, 

precision, recall, F1-score, and confusion matrix analysis. 

Special attention is paid to class-wise metrics to evaluate 

minority- class detection. Real-world smart contracts are used 

for vali- dation to simulate deployment scenarios. The system 

achieves reliable performance while maintaining ¡50 ms 

inference time, making it viable for live use cases. 

VII. EXPERIMENTAL RESULTS 

The updated hybrid model was implemented to perform 

multi-class classification of vulnerabilities in smart contracts. 

After data preprocessing and tokenization, the CNN-

BiLSTM model was trained to recognize patterns 

corresponding to four major vulnerability types. A rule-based 

verification system was applied after classification to validate 

predictions and reduce false positives. The model was 

evaluated using standard performance metrics. 

A. Dataset Preparation 

The dataset consists of 2,217 labeled smart contracts, 

grouped into four vulnerability categories: Dangerous 

Delegatecall (DE), Integer Overflow (OF), Reentrancy (RE), 

and Timestamp Dependency (TP). Each class was 

processed using Solidity-specific tokenization. No additional 

synthetic augmentation was used in this version. Class 

distribution imbalance was handled using oversampling and 

focal loss weighting during training. 

 
Fig. 3: Accuracy 

 
Fig. 4: Accuracy 

B. Model Training & Performance 

The CNN-BiLSTM model was trained using an 80-20 split 

over 20 epochs with early stopping. The model was optimized 

with focal loss (γ = 2) to improve learning on minority 

classes. A post-classification rule-based system cross-

checked predictions using class-specific Solidity heuristics, 

reducing misclassifications and increasing overall reliability. 

 
Fig. 5: Data Processing Workflow 

• Accuracy: At 95% after model detection and at 94.73% 

after reevaluating it with Rule based system. 

•  Macro F1-score: 0.94 Class-wise F1-scores:- DE: 0.94, 

OF: 0.96, RE: 0.98, TP: 0.88 
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Fig. 6: Confusion Matrix 

 
Fig. 7: Vulnerability detection 

• False Positives: reduced through rule-layer filtering, 

particularly in DE and TP classes. 

• Inference time: 4˜2 ms per contract, supporting real-time 

detection. 

C. Visualization & Validation 

Visual outputs including confusion matrix, accuracy/loss 

curves, and class-wise precision-recall bars were generated to 

validate performance trends. These visualizations confirm 

model convergence and balanced detection across all classes. 

D. Key Observations & Challenges 

Observations: 

• The hybrid CNN-BiLSTM model showed strong 

performance across all classes, particularly in RE and OF. 

Several challenges emerged during the course of this re- 

search, offering valuable insights for similar efforts. 

• Handling class imbalance was a significant concern. 

Vulnerabilities like Reentrancy and Integer Overflow 

were heavily represented, while Dangerous Delegatecall 

and Timestamp Dependency were scarce. This imbalance 

could have biased the model without mitigation strategies 

such as focal loss and oversampling, both of which proved 

essential for improving minority class recognition. 

• Generalization across varied coding styles was difficult 

due to the diversity of syntax in real-world contracts. 

Developing a custom Solidity-specific tokenizer and 

performing preprocessing that preserved semantically 

significant tokens (like delegatecall or block.timestamp) 

helped bridge this gap. 

• Real-time performance was another challenge, especially 

when aiming for integration into IDEs or CI/CD pipelines. 

We avoided CFG/AST generation and opted for sequence 

modeling to retain low latency, achieving an average 

inference time of 42 ms per contract. 

• Designing and integrating the rule-based verification 

layer required translating abstract SWC guidelines into 

specific, testable code patterns. Fine-tuning these 

heuristics was an iterative task, balancing precision and 

coverage. 

• Furthermore, aligning predicted vulnerabilities with 

developer-meaningful outputs (such as visualization and 

justification logs) demanded additional engineering effort 

to ensure that the hybrid model’s outputs were not only 

accurate but also explainable. 

E. Next Steps 

Although the current model performs well across four 

vulnerability types, it can be expanded to support additional 

classes from the Solidity Weakness Classification (SWC) 

catalog. Another promising direction is incorporating more 

semantic-rich embeddings derived from Abstract Syntax 

Trees (AST) or Control Flow Graphs (CFG), provided 

inference speed is not compromised. 

In future iterations, integrating attention mechanisms or 

lightweight transformer variants like DistilBERT can further 

boost performance without sacrificing interpretability. 

There’s also scope for incorporating automated patch 

suggestion mechanisms, enabling not just detection but also 

assisted remediation. Finally, testing the system on unseen 

real-world contracts deployed on Ethereum Mainnet or 

testnets will help evaluate its robustness in live production 

environments. 

VIII. CONCLUSION 

This study proposes a real-time, hybrid vulnerability 

detection system for Ethereum smart contracts that combines 

a CNN-BiLSTM classifier with a Solidity rule-based verifier. 

Unlike traditional binary approaches, the model performs 

multi-class classification to distinguish between key 

vulnerability types—delegatecall misuse, integer overflow, 

reentrancy, and timestamp dependency. The deep learning 

model captures structural and control-flow patterns, while the 

rule-layer provides semantic filtering and interpretability. 

The system achieved high accuracy and F1-score across all 

classes while maintaining low inference latency suitable for 

continuous auditing pipelines. The absence of synthetic 

augmentation simplifies training while preserving 

performance. Future enhancements will explore model 

explainability through code-level highlighting, IDE 

integration, and extension to multi-label vulnerabilities. This 

work contributes a scalable, explainable, and deployable 

solution to secure Ethereum smart contracts in real-world 

settings. 
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