
 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Volume 12 Issue 08 August 2025

1

Hybrid Deep Learning and Rule-based Approach

for Real-time Vulnerability Detection in Ethereum

Smart Contracts
[1] Shruti Manoj Chavan, [2] Dr. Vinod Pachghare

[1] M.Tech. in Computer Engineering, Data Science COEP Technological University, Pune, India
[2] Dept. of Computer Science & Engineering COEP Technological University, Pune, India

Email: [1] shruchavan23@gmail.com, [2] vkp.comp@coeptech.ac.in

Abstract— Ethereum smart contracts underpin critical DeFi and enterprise workflows, but their immutability and financial exposure

make them prime targets for exploitation. Vulnerabili- ties such as unchecked delegatecall usage, arithmetic overflows, reentrancy flaws,

and timestamp dependence can lead to serious breaches if undetected before deployment. This research proposes a lightweight, real-time

multi-class vulnerability detector that combines a CNN-BiLSTM network for semantic pattern learning with a Solidity-specific rule-

based verification layer. The model is trained using custom tokenized Solidity code and leverages focal loss and oversampling techniques

to handle class imbalance across four major vulnerability types. Unlike static analysis or binary classifiers, this hybrid system offers

nuanced catego- rization and semantic validation using rules drawn from the Solidity Vulnerability Catalog (SWC). It outputs

interpretable, class-specific justifications that aid developers during code audits. Evaluation on a dataset of ethereum smart contracts

showed reducuction in false positives, particularly in lower-frequency classes like Dangerous Delegatecall and Timestamp Dependency.

Thus, this solution advances the precision, interpretability, and usability of smart contract vulnerability detection tools, making it

deployable for real-world blockchain development environments.

Index Terms— Hybrid Deep Learning, Rule-based Approach, Vulnerability Detection, Ethereum Smart Contracts

I. INTRODUCTION

Ethereum smart contracts serve as the backbone of de-

centralized applications, executing logic autonomously on

the blockchain. However, their immutable nature and

financial significance make them attractive targets for

malicious actors. Detecting vulnerabilities in these contracts

is challenging due to the diversity of coding styles, logic

flows, and evolving exploit strategies.

Conventional tools such as static analysis and symbolic

execution offer rule-based precision but suffer from high

false positives and limited adaptability. On the other hand,

deep learning approaches provide scalability and

generalization but often act as black boxes and are biased

toward majority classes, especially in imbalanced datasets

common to smart contract security.

To overcome these limitations, this research proposes a

hybrid approach that combines a CNN-BiLSTM deep

learning model with a Solidity rule-based validation layer.

The neural network learns structural and sequential patterns

from Solidity contracts, while post-prediction rule filters

validate or suppress outputs using domain-specific heuristics

from the Solidity Vulnerability Catalog. The dataset is

augmented using synthetic bug injection to improve the

model’s ability to recognize low- frequency vulnerabilities.

The goal of this study is to build a real-time, multi-class

vulnerability detection system that balances precision, speed,

and interpretability. By combining deep learning and rule-

based logic, the system aims to improve detection accuracy

across multiple vulnerability types while maintaining

computational efficiency suitable for integration into

development pipelines. In summary, this work makes three

core contributions: (i) a light-weight CNN-BiLSTM

architecture trained with focal loss and oversampling to

tackle severe class imbalance; (ii) a Solidity-aware rule layer

that converts raw predictions into human-readable, SWC-

mapped alerts; and (iii) an IDE-ready API that streams live

confusion matrices, precision–recall dashboards, and JSON

reports to support continuous smart- contract auditing.

II. PROBLEM STATEMENT

Ethereum smart contracts are widely deployed in

decentralized financial systems, digital assets, and enterprise

ap- plications, yet their inherent immutability and public

visibility make them highly susceptible to logic and runtime

vulnerabilities. Existing vulnerability detection tools either

employ static rule-based logic or deep learning methods, each

with key limitations. Static analyzers often miss novel exploit

patterns and suffer from high false positive rates, while pure

machine learning approaches, especially binary classifiers,

fail to distinguish between different types of vulnerabilities

or explain the cause of their predictions.

Moreover, real-world contract datasets are highly

imbalanced, with some vulnerabilities like Reentrancy and

Integer Overflow dominating, while others like Dangerous

Delegate- call and Timestamp Dependency appear

infrequently. Most existing models do not handle this

imbalance effectively, leading to biased or incomplete

mailto:shruchavan23@gmail.com
mailto:vkp.comp@coeptech.ac.in

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Volume 12 Issue 08 August 2025

2

detection. In addition, the lack of interpretability in neural

models poses a barrier to adoption by developers who need

explainable output during audits.

To address these gaps, this work proposes a multi-class

hybrid vulnerability detection system that combines a CNN-

BiLSTM deep learning architecture with a Solidity rule-based

verification layer. The deep model captures contextual code

patterns, while the rule-based system enforces semantic vali-

dation using known heuristics (e.g., checking for delegatecall

or block.timestamp). Unlike binary classifiers, our model

pro- vides class-specific predictions, improving detection

granularity and reducing false positives. Class imbalance is

addressed through focal loss and oversampling, eliminating

the need for synthetic augmentation. This approach enables

interpretable, real-time detection across four vulnerability

types with high reliability and low inference latency.

III. OBJECTIVE

The primary objective of this research is to develop a real-

time, hybrid deep learning and rule-based system capable of

detecting and classifying multiple vulnerability types in

Ethereum smart contracts. Unlike traditional binary

classifiers or static analyzers, the proposed system aims to:

• Perform fine-grained, multi-class classification of smart

contract vulnerabilities, specifically targeting Dangerous

Delegatecall (DE), Integer Overflow (OF), Reentrancy

(RE) and Timestamp Dependency (TP).

• Leverage CNN-BiLSTM architecture to extract both

spatial (syntactic) and sequential (semantic) features from

tokenized Solidity code, enabling the model to capture

complex vulnerability signatures.

• Reduce false positives through a post-classification rule-

based validation layer, which uses Solidity-specific

heuristics aligned with the SWC (Smart Contract

Weakness Classification) registry to cross-verify

predictions.

• Address data imbalance using focal loss and

oversampling, thus eliminating the need for synthetic data

augmentation while ensuring accurate detection of

underrepresented vulnerability types.

• Provide interpretable results that support developers in

understanding the root cause of detected vulnerabilities

with class-specific insights.

IV. RELATED WORK

Vulnerability detection in Ethereum smart contracts has

been extensively researched, with existing solutions

employing static analysis, symbolic execution, deep learning,

or hybrid frameworks. While rule-based systems offer

interpretability, they are limited to predefined patterns. Deep

learning models

enhance generalization but struggle with explainability and

handling class imbalance. Hybrid models have emerged to

combine these strengths and address their individual

limitations.

Graph-based models like GNNs and transformer-based

systems such as CodeBERT and GRATDet achieve high

precision by learning contextual and semantic relationships in

contract code. However, their complexity and compute

requirements hinder deployment in real-time settings. These

models are often not optimized for rapid inference or

integration within live development workflows, and their

decision-making processes are generally opaque.

Hybrid models that combine deep learning with symbolic

rules have shown improved real-time viability. Multi-modal

approaches integrating opcode, source code, and graph

structures provide richer context but introduce significant

complexity and overhead. These approaches often fail to

strike the necessary balance between interpretability,

efficiency, and flexibility required for real-world auditing.

This research proposes a practical and scalable hybrid

approach combining a CNN-BiLSTM model with a rule-

based validation layer. Unlike GNNs, the model leverages

Solidity- specific tokenization and sequential modeling to

enhance both speed and interpretability. Compared to

transformer models, it is computationally lightweight and

designed for real-time classification of multiple vulnerability

types. Rule-based cross- verification further improves

precision and trustworthiness, addressing key challenges in

existing approaches.

By consolidating these insights, this work bridges the gap

between accuracy, efficiency, and explainability, providing a

practical solution for real-time smart contract vulnerability

detection.

V. PROPOSED SOLUTION

Due to the immutable nature and financial exposure of

Ethereum smart contracts, robust and real-time vulnerability

detection is essential. Existing tools often fall short in

handling rare vulnerabilities, reducing false positives, or

operating under real-time constraints. This research proposes

a hybrid model that combines deep learning with rule-based

post-processing to classify contracts into multiple

vulnerability categories effectively.

• Hybrid Model Architecture: A CNN-BiLSTM model is

used to detect vulnerability patterns in smart contract

code—CNN captures syntax patterns, and BiLSTM

captures sequential dependencies. This is followed by a

rule- based validation layer that verifies predictions

against SWC-guided heuristics. The hybrid structure

enhances detection accuracy and reduces false positives,

especially for minority-class vulnerabilities like

dangerous delegate- call. To fine-tune the architecture for

smart contract data, the CNN-BiLSTM model

incorporates two convolutional layers with filter size 128

and kernel size 5, followed by a max-pooling layer and a

128-unit BiLSTM block. This arrangement ensures that

both local patterns and long- range control flows in the

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Volume 12 Issue 08 August 2025

3

code are captured effectively. A fully connected layer

with ReLU activation precedes the softmax output layer

for four-class classification. Dropout regularization and

early stopping are used to enhance generalization. The

model is trained using focal loss to mitigate class

imbalance and ensure robust classification of rare

vulnerabilities.

Fig. 1: Data Processing Workflow

• System Workflow: Smart contracts undergo Solidity-

specific tokenization to preserve meaningful syntax and

structure. Instead of CFGs and ASTs, direct sequence

modeling is applied using token vectors. The CNN-

BiLSTM model outputs class probabilities, which are

then filtered through the rule-based validator to suppress

false alarms and enforce alignment with known

vulnerability indicators (e.g., use of delegate- call,

block.timestamp, etc.). This workflow enables faster

inference by avoiding computationally expensive graph

constructions like CFGs. Tokenization is done through a

custom parser that segments contract code into mean-

ingful tokens such as control keywords, variables, and

function calls. The model uses fixed-length token vectors

padded or truncated to a length of 1,000. Each token is

embedded into a vector space where semantic similarities

are preserved, allowing the neural model to generalize

across diverse coding styles. This streamlined pipeline

supports integration with IDEs and security audit tools,

making it a practical real-time solution.

• Tokenization for Model Training: Code mutations

and token reordering help simulate diverse coding

styles and logic structures, improving model

generalization across various contract types.

• Advantages Over Existing Methods: Compared to

transformer or GNN-based systems, this architecture

offers a lighter footprint, faster inference, and better

interpretability. The rule-based verification boosts

trust in predictions, while multi-class output provides

finer- grained insights than traditional binary

classifiers. This makes it ideal for plug-in deployment

in development environments.

In summary, the proposed approach leverages deep

learning, rule-based validation, and synthetic data

augmentation to enhance the accuracy and efficiency of smart

contract vulnerability detection. The system is designed for

real- time performance, making it a practical solution for

securing Ethereum smart contracts.

VI. METHODOLOGY

The methodology involves constructing a hybrid multi-

class classification pipeline using CNN-BiLSTM for

vulnerability pattern learning and a Solidity-specific rule-

based system for post-classification verification. The process

includes data pre- processing, tokenization, model training,

rule-layer integration, and performance evaluation under real-

time constraints.

A. Data Preparation and Preprocessing

Solidity contracts were collected from verified open-

source datasets and GitHub repositories associated with

known vulnerabilities. Each sample was labeled based on

four categories: Dangerous Delegatecall (DE), Integer

Overflow (OF), Reentrancy (RE), and Timestamp

Dependency (TP). The contracts underwent preprocessing to

eliminate comments, normalize spacing, and standardize

brackets and function indentation. This ensured that only

functional code contributed to token sequences, enhancing

pattern consistency across classes.

To ensure label quality, samples were cross-referenced

with curated entries in the SWC Registry. Samples with

ambiguous patterns or unclear exploits were discarded to

maintain high annotation precision. The final dataset

comprised 2,217 con- tracts, with class imbalance handled

downstream during model training.

B. Tokenization and Feature Engineering

A Solidity-specific tokenizer was developed to preserve

semantically significant tokens such as delegatecall,

call.value, and block.timestamp. The tokenizer converts code

into a sequence of tokens, filters out comments and

uninformative literals, and aligns similar constructs to shared

token IDs (e.g., mapping both require and assert to COND).

Each token sequence was then padded or truncated to a

fixed length of 1,000 tokens and embedded using a trainable

embedding layer. This embedding captures contextual

similarity between different code constructs. Additionally,

simple heuristics (like detecting modifiers or low-level calls)

were encoded as auxiliary binary features to supplement the

sequence input.

C. Deep Learning Model: CNN-BiLSTM Hybrid

The classification backbone is a CNN-BiLSTM model tai-

lored to learn vulnerability signatures across sequences of

Solidity tokens.

• CNN layers extract shallow code features, such as unsafe

call sequences or misuse of modifiers

• BiLSTM layers capture bidirectional control flow and

dependency relationships in code logic.

• The model is optimized using focal loss to address class

imbalance, and trained with dropout regularization and

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Volume 12 Issue 08 August 2025

4

early stopping to improve generalization.

Fig. 2: Hybrid Model Working

D. Rule-Based Validation System

After classification, each contract prediction is passed

through a rule-checking layer that cross-validates the result

with known vulnerability indicators. For example, if a

contract is predicted as containing a timestamp dependency,

the rule checker verifies the presence of block.timestamp or

similar constructs in a relevant logic block.

These rules are derived from the Solidity Weakness

Classification (SWC) and implemented using static pattern

matchers. The rule engine helps suppress spurious

predictions, especially in the case of over-predicted majority

classes like RE. Combined with the classifier output, this step

contributes to a reduction of false positives by approximately

19%, making the hybrid output more trustworthy for

developer review.

E. Evaluation Metrics and Performance Testing

The model’s performance is evaluated using accuracy,

precision, recall, F1-score, and confusion matrix analysis.

Special attention is paid to class-wise metrics to evaluate

minority- class detection. Real-world smart contracts are used

for vali- dation to simulate deployment scenarios. The system

achieves reliable performance while maintaining ¡50 ms

inference time, making it viable for live use cases.

VII. EXPERIMENTAL RESULTS

The updated hybrid model was implemented to perform

multi-class classification of vulnerabilities in smart contracts.

After data preprocessing and tokenization, the CNN-

BiLSTM model was trained to recognize patterns

corresponding to four major vulnerability types. A rule-based

verification system was applied after classification to validate

predictions and reduce false positives. The model was

evaluated using standard performance metrics.

A. Dataset Preparation

The dataset consists of 2,217 labeled smart contracts,

grouped into four vulnerability categories: Dangerous

Delegatecall (DE), Integer Overflow (OF), Reentrancy (RE),

and Timestamp Dependency (TP). Each class was

processed using Solidity-specific tokenization. No additional

synthetic augmentation was used in this version. Class

distribution imbalance was handled using oversampling and

focal loss weighting during training.

Fig. 3: Accuracy

Fig. 4: Accuracy

B. Model Training & Performance

The CNN-BiLSTM model was trained using an 80-20 split

over 20 epochs with early stopping. The model was optimized

with focal loss (γ = 2) to improve learning on minority

classes. A post-classification rule-based system cross-

checked predictions using class-specific Solidity heuristics,

reducing misclassifications and increasing overall reliability.

Fig. 5: Data Processing Workflow

• Accuracy: At 95% after model detection and at 94.73%

after reevaluating it with Rule based system.

• Macro F1-score: 0.94 Class-wise F1-scores:- DE: 0.94,

OF: 0.96, RE: 0.98, TP: 0.88

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Volume 12 Issue 08 August 2025

5

Fig. 6: Confusion Matrix

Fig. 7: Vulnerability detection

• False Positives: reduced through rule-layer filtering,

particularly in DE and TP classes.

• Inference time: 4˜2 ms per contract, supporting real-time

detection.

C. Visualization & Validation

Visual outputs including confusion matrix, accuracy/loss

curves, and class-wise precision-recall bars were generated to

validate performance trends. These visualizations confirm

model convergence and balanced detection across all classes.

D. Key Observations & Challenges

Observations:

• The hybrid CNN-BiLSTM model showed strong

performance across all classes, particularly in RE and OF.

Several challenges emerged during the course of this re-

search, offering valuable insights for similar efforts.

• Handling class imbalance was a significant concern.

Vulnerabilities like Reentrancy and Integer Overflow

were heavily represented, while Dangerous Delegatecall

and Timestamp Dependency were scarce. This imbalance

could have biased the model without mitigation strategies

such as focal loss and oversampling, both of which proved

essential for improving minority class recognition.

• Generalization across varied coding styles was difficult

due to the diversity of syntax in real-world contracts.

Developing a custom Solidity-specific tokenizer and

performing preprocessing that preserved semantically

significant tokens (like delegatecall or block.timestamp)

helped bridge this gap.

• Real-time performance was another challenge, especially

when aiming for integration into IDEs or CI/CD pipelines.

We avoided CFG/AST generation and opted for sequence

modeling to retain low latency, achieving an average

inference time of 42 ms per contract.

• Designing and integrating the rule-based verification

layer required translating abstract SWC guidelines into

specific, testable code patterns. Fine-tuning these

heuristics was an iterative task, balancing precision and

coverage.

• Furthermore, aligning predicted vulnerabilities with

developer-meaningful outputs (such as visualization and

justification logs) demanded additional engineering effort

to ensure that the hybrid model’s outputs were not only

accurate but also explainable.

E. Next Steps

Although the current model performs well across four

vulnerability types, it can be expanded to support additional

classes from the Solidity Weakness Classification (SWC)

catalog. Another promising direction is incorporating more

semantic-rich embeddings derived from Abstract Syntax

Trees (AST) or Control Flow Graphs (CFG), provided

inference speed is not compromised.

In future iterations, integrating attention mechanisms or

lightweight transformer variants like DistilBERT can further

boost performance without sacrificing interpretability.

There’s also scope for incorporating automated patch

suggestion mechanisms, enabling not just detection but also

assisted remediation. Finally, testing the system on unseen

real-world contracts deployed on Ethereum Mainnet or

testnets will help evaluate its robustness in live production

environments.

VIII. CONCLUSION

This study proposes a real-time, hybrid vulnerability

detection system for Ethereum smart contracts that combines

a CNN-BiLSTM classifier with a Solidity rule-based verifier.

Unlike traditional binary approaches, the model performs

multi-class classification to distinguish between key

vulnerability types—delegatecall misuse, integer overflow,

reentrancy, and timestamp dependency. The deep learning

model captures structural and control-flow patterns, while the

rule-layer provides semantic filtering and interpretability.

The system achieved high accuracy and F1-score across all

classes while maintaining low inference latency suitable for

continuous auditing pipelines. The absence of synthetic

augmentation simplifies training while preserving

performance. Future enhancements will explore model

explainability through code-level highlighting, IDE

integration, and extension to multi-label vulnerabilities. This

work contributes a scalable, explainable, and deployable

solution to secure Ethereum smart contracts in real-world

settings.

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Volume 12 Issue 08 August 2025

6

REFERENCES

[1] Z. Liu et al., ”A Smart Contract Vulnerability Detection

Mechanism Based on Deep Learning and Expert Rules,” IEEE

Access, vol. 11, pp. 1-10, 2023.

[2] X. Tang et al., ”Lightning Cat: A Deep Learning-based

Solution for Smart Contracts Vulnerability Detection,” Salus

Security, Beijing, 2023.

[3] Zhuang et al., ”A Novel Method for Smart Contract

Vulnerability Detection Based on Graph Neural Networks,”

CMC, vol. 79, no. 2, pp. 3024-3040, 2024.

[4] W. Yang et al., ”GRATDet: Smart Contract Vulnerability

Detector Based on Graph Representation and Transformer,”

CMC, vol. 76, no. 2, pp. 1460-1480, 2023.

[5] W. Deng et al., ”Smart Contract Vulnerability Detection

Based on Deep Learning and Multimodal Decision Fusion,”

Sensors, vol. 23, no. 7246,pp. 1-21, 2023.

[6] L. Zhang et al., ”A Novel Smart Contract Vulnerability

Detection Method Based on Information Graph and Ensemble

Learning,” Sensors, vol. 22, no. 9, pp. 3581, 2022.

[7] J. Huang et al., ”Smart Contract Vulnerability Detection

Model Based on Multi-Task Learning,” Sensors, vol. 22, no.

1829, pp. 1-24, 2022.

[8] X. Tang et al., ”Lightning Cat: A Deep Learning-Based

Solution for Detecting Vulnerabilities in Smart Contracts,”

Scientific Reports, vol. 13, no. 20106, 2023.

[9] Y. Liu et al., ”SC Vulnerability Detection Based on SET,”

Proceedings of the CNCERT, vol. 1506, pp. 193-207, 2022.

[10] R. N. A. Sosu et al., ”VdaBSC: A Novel Vulnerability

Detection Approach for Blockchain Smart Contract by

Dynamic Analysis,” IET Software, vol. 1, no. 1, pp. 1-17,

2023.

[11] R. N. A. Sosu et al., ”A Vulnerability Detection Approach for

Auto- mated Smart Contract Using Enhanced Machine

Learning Techniques,” Research Square, 2022.

